If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x-2x^2=128
We move all terms to the left:
48x-2x^2-(128)=0
a = -2; b = 48; c = -128;
Δ = b2-4ac
Δ = 482-4·(-2)·(-128)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{5}}{2*-2}=\frac{-48-16\sqrt{5}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{5}}{2*-2}=\frac{-48+16\sqrt{5}}{-4} $
| 4/8w=28 | | 2(x+2)+7=3x+(-32) | | 3x-5=19-8 | | 2x+7=5×+16= | | -8(-6x+1)=-8-8x | | 2x+7=5×+16 | | 2x+6=5x+-4 | | 3f+5=8f | | 2|x-4|+10=6 | | 3x+2/5−1/2=−23/5 | | 18z-17z=8 | | 84+(p+4)=3p-6 | | 14x+-15x=-2 | | 5x-19=-21x+61 | | 3x-3=8x+1 | | 3x+(2x-14°)+(x+2)=180° | | 16a+-11a=20 | | 7a-5=8a | | -2(4x-8)+7x=7+5(3x-1) | | 6(x+1)=8x+10-4x | | 3x+25−12=−235 | | 3x+3=(x+2) | | 3w-11√w+6=0 | | -2+3=2x17 | | 3x+3x=6x+2 | | 29-7x=-4(-7x-7) | | 1x+8=5x+2 | | -4y+14=20-2y | | 2v-v-1=7 | | 16a+-11a=30 | | (3k+30)=(95-k)+(2k-5) | | 3x-2=139 |